Control Structure Selection for Integral Control with Integrity

Kurt E. Häggblom

Process Control Laboratory
Faculty of Chemical Engineering
Åbo Akademi University
FIN–20500 Åbo (Turku)
Finland

E-mail: khaggblo@abo.fi
Fax: +358–2–2154479
Outline

- Control structure selection
 - introductory example
 - importance of correct variable pairing
- The Relative Gain Array
- Shortcomings of the RGA
 - as interaction measure
 - as robustness measure
 - in variable pairing
- Examples of problems in variable pairing by RGA
 - necessity to consider partial control
 - inadequacy of conventional pairing rule
- Integral control with integrity
- The Partial Relative Gain
- Application of PRG to Petlyuk distillation column
 - decentralized control
 - block-decentralized control
- Conclusions
We want to control the total flow rate F and the temperature T by manipulating the flowrates F_1 and F_2 using a decentralized control structure (i.e., two SISO control loops).

The basic question is: How should we pair the variables in the control loops?

Should we control F by F_1 and T by F_2, or vice versa?
Control Structure Selection
Importance of Correct Variable Pairing

\[v_H \]

\[m_H T_H \]

\[m_D T_D \]

\[m_C T_C \]

\[\{ M T \} \]

\[h \]

\[m T \]

\[h_o \]
SISO PI control of mixing tank with correct variable pairing ($\lambda = 0.68$).
SISO PI control of mixing tank with incorrect variable pairing ($\lambda = 0.38$).
The Relative Gain Array
Properties of RGA

Relative gain analysis is a widely used technique in control structure selection. It is based on a “Relative Gain Array” (RGA), which is a matrix of interaction measures for all possible single-input single-output (SISO) pairings between a set of variables. The RGA

- indicates the preferable variable pairings in a decentralized (multiloop SISO) control system based on interaction considerations;

- provides information about fundamental properties such as integral controllability, integrity, and robustness with respect to modelling errors and input uncertainty;

- is not a true measure of closed-loop interactions, which means that the RGA may fail for systems larger than 2×2.

NERPPI Course 1999: Control Structure Selection...
Definition of RGA

Static (non-linear) model

\[
y_1 = f_1(u_1, u_2, \ldots, u_n) \\
y_2 = f_2(u_1, u_2, \ldots, u_n) \\
\vdots \\
y_n = f_n(u_1, u_2, \ldots, u_n)
\]

\[
\lambda_{ij} = \left(\frac{\partial y_i}{\partial u_j} \bigg|_{u_k \neq j} \right) / \left(\frac{\partial y_i}{\partial u_j} \bigg|_{y_k \neq i} \right)
\]

\[
\Lambda = \begin{bmatrix}
\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1n} \\
\lambda_{21} & \lambda_{22} & \ldots & \lambda_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{n1} & \lambda_{n2} & \ldots & \lambda_{nn}
\end{bmatrix}
\]
Transfer function model

\[y_1(s) = G_{11}(s)u_1(s) + G_{12}(s)u_2(s) + \ldots + G_{1n}(s)u_n(s) \]

\[y_2(s) = G_{21}(s)u_1(s) + G_{22}(s)u_2(s) + \ldots + G_{2n}(s)u_n(s) \]

\[\vdots \]

\[y_n(s) = G_{n1}(s)u_1(s) + G_{n2}(s)u_2(s) + \ldots + G_{nn}(s)u_n(s) \]

\[G(s) = \begin{bmatrix}
G_{11}(s) & G_{12}(s) & \ldots & G_{1n}(s) \\
G_{21}(s) & G_{22}(s) & \ldots & G_{2n}(s) \\
\vdots & \vdots & \ddots & \vdots \\
G_{n1}(s) & G_{n2}(s) & \ldots & G_{nn}(s)
\end{bmatrix} \]

\[\Lambda(s) = G(s) \circ (G(s)^{-1})^T \]

\[\circ = \text{Hadamard product} = \text{Matlab } \ast \text{ product} \]

\[(C = A \circ B \iff C_{ij} = A_{ij}B_{ij}) \]
Interpretations of the RGA

The open-loop gain g_{ij} will change by the factor λ_{ij}^{-1}, where λ_{ij} is the relative gain for pairing output “i” with input “j”, when other control loops are closed. This implies:

- Variable pairings with positive λ_{ij} as close to unity as possible should be preferred; $\lambda_{ij} = 1$ indicates a “perfect” variable pairing.

- Negative relative gains should be avoided; $\lambda < 0$ results in a closed-loop system which is only conditionally stable, at best.

- Relative gains much larger than unity should be avoided; a system with $\lambda_{ij} \gg 1$ may be practically uncontrollable.

- If g_{ij} and $\lambda_{ij} = 0$, the relative gain does not indicate whether the variable pairing is feasible; control depends entirely on other control loops.
Shortcomings of the RGA

Limitations of RGA as Interaction Measure

- λ_{ij} relates the open-loop gain between y_i and u_j when other outputs are uncontrolled to the same open-loop gain when other outputs are controlled.

 \Rightarrow λ_{ij} is an open-loop measure for the y_i–u_j pairing.

- λ_{ij} does not contain explicit information on how other inputs u_k, $k \neq j$, affect y_i when y_i is paired with u_j, or how u_j affects other outputs y_k, $k \neq i$, when the loop y_i–u_j is closed.

 \Rightarrow There may be considerable interaction between control loops even when $\lambda_{ij} = 1$.
Interaction in Triangular System

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} = \frac{1}{10s + 1} \begin{bmatrix}
 1 & 10 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix}
\]

\[\Lambda = \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix}\]

Setpoint change of (a) \(y_1\), (b) \(y_2\). \(y_1 = --\), \(y_2 = --\).
RGA as Robustness Measure

It has been proved that the RGA is a rigorous measure of the sensitivity of the system to modelling errors.

- The system becomes singular if a transfer function G_{ij} is changed by the amount $-G_{ij}\lambda_{ij}^{-1}$.

- If there are perturbations in several transfer functions, the system may become singular even for smaller changes.

- A system with large entries in the RGA ($|\lambda_{ij}| \gg 1$) is very sensitive to modelling errors.

- λ_{ij}^{-1} is a measure of the relative error in G_{ij} that will make the system singular; if $G_{ij} \approx 0$, a small absolute perturbation of G_{ij} may completely change the system properties even if $|\lambda_{ij}|$ is small.
Sensitivity of (almost) Triangular System

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} = \frac{1}{10s + 1} \begin{bmatrix}
 1 & 10 \\
 0.09 & 1
\end{bmatrix} \begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix}
\]

\[\Lambda = \begin{bmatrix}
 10 & -9 \\
 -9 & 10
\end{bmatrix}\]

Setpoint change of (a) \(y_1\), (b) \(y_2\). \(y_1 = ___\, y_2 = ___.\)
Limitations of RGA in Variable Pairing

• The steady-state RGA may suggest a different set of variable pairings than the RGA evaluated at higher frequencies.
 ⇒ It has to be considered what frequency range is most important for feedback control.

• For 3×3 or larger systems, there is not always a clearcut choice of variable pairings even if only a single frequency is considered.
 o It may be necessary to select variable pairings corresponding to zero or negative relative gains.
 o The best control performance is not necessarily obtained by the set of variable pairings with relative gains closest to unity.
 ⇒ The feasibility of the variable pairings have to be decided by other means.
• Even if all variable pairings correspond to positive relative gains, decentralized integral controllability cannot necessarily be guaranteed.

⇒ The RGA is usually used together with other measures, such as the Niederlinski index or the Morari index of integral controllability.

○ Another solution: RGA for partially controlled plant.
Problems in Variable Pairing by RGA

Example 1: Necessity to consider partially controlled system

Two-product distillation column with total condenser (Häggblom and Waller, 1991):

\[
\begin{bmatrix}
 y(s) \\
 z(s)
\end{bmatrix} =
\begin{bmatrix}
 G_{yu}(s) & 0 \\
 G_{zu}(s) & Is^{-1}
\end{bmatrix}
\begin{bmatrix}
 u(s) \\
 v(s)
\end{bmatrix}
\]

\[
y = [x_D \ x_B]^T, \quad u = [L \ V]^T
\]

\[
z = [h_D \ h_B]^T, \quad v = [D \ B]^T
\]

RGA:

\[
\Lambda(s) = \begin{bmatrix}
 G_{yu}(s) & 0 \\
 G_{zu}(s) & Is^{-1}
\end{bmatrix} \circ \begin{bmatrix}
 G_{yu}(s) & 0 \\
 G_{zu}(s) & Is^{-1}
\end{bmatrix}^{-T}
= \begin{bmatrix}
 \Lambda_{yu}(s) & 0 \\
 0 & I
\end{bmatrix}
\]

where

\[
\Lambda_{yu}(s) = G_{yu}(s) \circ G_{yu}(s)^{-T}
\]

\(\Lambda(s)\) implies that \(y\) should always be controlled by \(u\) and \(z\) by \(v\) (i.e., the LV-structure).
Two-Product Distillation Column

NERPPI Course 1999: Control Structure Selection...
RGs for Distillation Control Structures

Note: The “best” control structures (RB, LB, DB at higher frequencies) have variable pairings on zero relative gains of the full open-loop model.
Variable Pairing on $\lambda = 0$

- The feasibility of a variable pairing corresponding to a relative gain equal to zero is entirely dependent on other control loops in the closed-loop system.

 \Rightarrow At least some of the other control loops have to be closed when the feasibility of such variable pairings are considered.

- In distillation, inventory control is necessary to make continuous operation possible, but apart from that, the inventory control is of minor importance compared to product quality control.

 \Rightarrow It is natural to consider product quality control under the assumption that inventory control loops are closed.

- Closing control loops is likely to be a useful procedure also in other situations, where conventional application of RGA does not solve the variable pairing problem.
Example 2: Inadequacy of conventional variable pairing rule

Example by Hovd and Skogestad (1992):

\[G(s) = \frac{(1 - s)}{(1 + 5s)^2} \begin{bmatrix} 1 & -4.19 & -25.96 \\ 6.19 & 1 & -25.96 \\ 1 & 1 & 1 \end{bmatrix} \]

\[\Lambda(G(s)) = \begin{bmatrix} 1 & 5 & -5 \\ -5 & 1 & 5 \\ 5 & -5 & 1 \end{bmatrix} \]

Variable pairing on

- \(\lambda_{ij} = 1 \) (configuration \(C_{123} \)) results in a closed-loop time constant \(\tau_{CL} \approx 1160 \),

- \(\lambda_{ij} = 5 \) (configuration \(C_{231} \)) results in a closed-loop time constant \(\tau_{CL} \approx 220 \).
Partial Control

Example 2 (cont’d)

• Variable pairing on $\lambda_{ij} = 1$ (config. C_{123}). Closing control loop y_3-u_3 results in the transfer matrix

$$\tilde{G}_{120}(s) = \frac{(1-s)}{(1+5s)^2} \begin{bmatrix} 26.96 & 21.77 \\ 32.15 & 26.96 \end{bmatrix}$$

for the remaining subsystem. The RGA for the partially controlled system is

$$\Lambda(\tilde{G}_{120}(s)) = \begin{bmatrix} 26.98 & -25.98 \\ -25.98 & 26.98 \end{bmatrix}$$

⇒ Control performance will be very sluggish.

• Variable pairing on $\lambda_{ij} = 5$ (config. C_{231}). Closing control loop y_3-u_1 results in a partially controlled system with the RGA

$$\Lambda(\tilde{G}_{230}(s)) = \begin{bmatrix} 6.19 & -5.19 \\ -5.19 & 6.19 \end{bmatrix}$$

⇒ No particular control problems.
RGA for Decomposed System

Linear $n \times n$ system:

$$y(s) = G(s)u(s)$$

The Relative Gain Array

$$\Lambda(G) = G \circ G^{-T}$$

Let G and Λ be partitioned as

$$G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{bmatrix}$$

where G_{22} is assumed to be nonsingular. Then

$$\Lambda_{11}(G) = G_{11} \circ \bar{G}_{11}^{-T}$$

where

$$\bar{G}_{11} = G_{11} - G_{12}G_{22}^{-1}G_{21}$$

is the Schur complement of G_{22}.

Note: \bar{G}_{11} is also the effective gain matrix of subsystem $G_{11}(s)$ when the rest of the system (i.e., $G_{22}(s)$) is closed under integral feedback control.
The Relative Gain Array (cont’d)

Let G_m denote a square submatrix of G and $\Lambda_m(G)$ the corresponding submatrix of $\Lambda(G)$. Then

$$\Lambda_m(G) = G_m \circ \bar{G}_m^{-T}$$

where \bar{G}_m is the effective gain matrix of subsystem $G_m(s)$ when the rest of the system is closed under integral feedback control.

The RGA for subsystem $G_m(s)$ with the rest of the system open is

$$\Lambda(G_m) = G_m \circ G_m^{-T}$$

The Block Relative Gain

The BRG for MIMO control of subsystem $G_m(s)$ is defined

$$\Lambda^B_m(G) = G_m \bar{G}_m^{-1}$$
Integral Controllability and Integrity

A system \(G(s) \) is integral controllable with integrity (ICI) if there exists a decentralized controller with integral action such that the closed-loop system is unconditionally stable and remains stable when individual controllers are arbitrarily brought in and out of service.

The closed-loop system has this property if it remains stable when the gains of all individual controllers are simultaneously detuned by a factor \(\epsilon \) in the range \(0 < \epsilon \leq 1 \) as well as when the gains of any combination of controllers are set to 0.

Theorem ICI

For variable pairing along the diagonal, \(G(s) \) is ICI only if \(N(G) > 0 \) and \(N(G_{mk}) > 0 \) for all principal submatrices \(G_{mk} \) of size \(k \times k, \ k = 2, \ldots, n - 1 \).

An equivalent condition is \(\lambda_{ii}(G) > 0, \ i = 1, \ldots, n, \) and \(\lambda_{ii}(G_{mk}) > 0, \ i = 1, \ldots, k \).

\[(\text{Niederlinski index} \ N(G) = \det(G)/\prod_i g_{ii}) \]
Decentralized Integral Controllability

A system \(G(s) \) is decentralized integral controllable (DIC) if there exists a decentralized controller with integral action in each loop, such that the closed-loop system remains stable when the gains of any combination of individual controllers are detuned by individual factors \(\epsilon_i, 0 \leq \epsilon \leq 1 \).

Remarks

- Usually DIC is a desired property since it allows the individual controllers to be arbitrarily detuned.

- The known tests for DIC tend to be rather complicated, however. Furthermore, they are, in general, only necessary but not sufficient, or sufficient but conservative.

- Since DIC implies ICI according to the definitions, Theorem ICI gives necessary conditions for DIC.
The Partial Relative Gain

Let $\tilde{G}_m(s)$ denote the transfer matrix of subsystem $G_m(s)$ when the rest of the system $G(s)$ is under integral feedback control. The partial relative gain (PRG) for subsystem $G_m(s)$ is then

$$\Lambda_m^P(G) = \Lambda(\tilde{G}_m) = \tilde{G}_m \circ \tilde{G}_m^{-T}$$

The PRG provides information that other measures do not:

$$\Lambda_m^P(G) \neq \Lambda_m(G) = G_m \circ G_m^{-T}$$
$$\neq \Lambda(G_m) = G_m \circ G_m^{-T}$$
$$\neq \Lambda_m^B(G) = G_m \tilde{G}_m^{-1}$$

Theorem PRG

For variable pairing along the diagonal, $G(s)$ is ICI only if $\lambda_{ii}(G') > 0$, $i = 1, \ldots, n$, and $\lambda_{ii}(\tilde{G}_{m_k}) > 0$, $i = 1, \ldots, k$, for all principal subsystems $G_{m_k}(s)$ of size $k \times k$, $k = 2, \ldots, n - 1$.

If, in addition to $\lambda_{ii}(G) > 0$, the Niederlinski index $N(G') > 0$, the condition for $k = 2$ is redundant.
Proof of Theorem PRG (Partial)

Consider a system $G(s)$ and a principal subsystem $G_m(s)$ containing the ith input and output of $G(s)$. Denote by $G^m_{ii}(s)$ the subsystem obtained by excluding the variables of $G_m(s)$, except the ith ones.

\[
 G = \begin{array}{c}
 G_m \\
 g_{ii} \\
 G^m_{ii}
\end{array}
\]

RGA: \[\Lambda_m(G) = G_m \circ \bar{G}_m^{-T} \]

PRG: \[\Lambda(\bar{G}_m) = \bar{G}_m \circ \bar{G}_m^{-T} \]

\[\Rightarrow G_m \circ \Lambda(\bar{G}_m) = \Lambda_m(G) \circ \bar{G}_m \]

\[\Rightarrow g_{ii} \lambda_{ii}(\bar{G}_m) = \lambda_{ii}(G) (\bar{G}_m)_{ii} \]

$(\bar{G}_m)_{ii}$ is the effective gain of g_{ii} when the system excluding G_m is closed. \[\Rightarrow \]

\[\lambda_{ii}(G^m_{ii}) = g_{ii}/(\bar{G}_m)_{ii} \]

Combination of the last two equations gives

\[\lambda_{ii}(\bar{G}_m) = \lambda_{ii}(G)/\lambda_{ii}(G^m_{ii}) \]

\[\Rightarrow \text{RGA conditions of Theorem ICI and Theorem PRG are equivalent.} \]
Case Study: Petlyuk Distillation Column
(Wolff and Skogestad, 1995)

\[y = \begin{bmatrix} x_{D_1} & x_{B_3} & x_{S_1} & x_{S_2} \end{bmatrix}^T \]
\[u = \begin{bmatrix} L & V & R_L & S \end{bmatrix}^T \]
Model and RGA:

\[
G = \begin{bmatrix}
153.45 & -179.34 & 0.23 & 0.03 \\
-157.67 & 184.75 & -0.10 & 21.63 \\
24.63 & -28.97 & -0.23 & -0.10 \\
-4.80 & 6.09 & 0.13 & -2.41
\end{bmatrix}
\]

\[
\Lambda(G) = \begin{bmatrix}
24.5230 & -23.6378 & 0.1136 & 0.0012 \\
-48.9968 & 49.0778 & 0.0200 & 0.8990 \\
38.5591 & -38.6327 & 1.0736 & 0.0000 \\
-13.0852 & 14.1927 & -0.2072 & 0.0998
\end{bmatrix}
\]

Potential control configurations according to RGA:

<table>
<thead>
<tr>
<th>Config.</th>
<th>Variable Pairings</th>
<th>Relative Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{1432})</td>
<td>{1–1,2–4,3–3,4–2}</td>
<td>{24.5, 0.90, 1.07, 14.2}</td>
</tr>
<tr>
<td>(C_{3412})</td>
<td>{1–3,2–4,3–1,4–2}</td>
<td>{0.11, 0.90, 38.6, 14.2}</td>
</tr>
<tr>
<td>(C_{1234})</td>
<td>{1–1,2–2,3–3,4–4}</td>
<td>{24.5, 49.1, 1.07, 0.10}</td>
</tr>
<tr>
<td>(C_{3214})</td>
<td>{1–3,2–2,3–1,4–4}</td>
<td>{0.11, 49.1, 38.6, 0.10}</td>
</tr>
<tr>
<td>(C_{1342})</td>
<td>{1–1,2–3,3–4,4–2}</td>
<td>{24.5, 0.02, 0.00, 14.2}</td>
</tr>
<tr>
<td>(C_{4312})</td>
<td>{1–4,2–3,3–1,4–2}</td>
<td>{0.00, 0.02, 38.6, 14.2}</td>
</tr>
</tbody>
</table>
Application of PRG

Closing loop 1–1 gives:

\[
\tilde{G}_{0234} = \begin{bmatrix}
0 & 0.4780 & 0.1363 & 21.6608 \\
0 & -0.1844 & -0.2669 & -0.1048 \\
0 & 0.4081 & 0.1372 & -2.4091 \\
\end{bmatrix}
\]

\[
\Lambda(\tilde{G}_{0234}) = \begin{bmatrix}
0 & 0.1270 & -0.0272 & 0.9003 \\
0 & -0.2460 & 1.2460 & 0.0000 \\
0 & 1.1190 & -0.2187 & 0.0997 \\
\end{bmatrix}
\]

Theorem PRG: \(C_{1342} \) is not ICI. \(C_{1432} \) appears very good.

Closing loop 3–1 gives:

\[
\Lambda(\tilde{G}_{2304}) = \begin{bmatrix}
0.1515 & 0.8215 & 0.0270 \\
-0.1867 & 0.3143 & 0.8724 \\
1.0352 & -0.1358 & 0.1006 \\
\end{bmatrix}
\]

\(\Rightarrow \) \(C_{3214} \) is not ICI, \(C_{3412} \) appears very good.
Closing loop 4–2 gives:

\[\Lambda(\bar{G}_{1340}) = \begin{bmatrix}
1.9334 & 2.0048 & -2.9382 \\
-3.7459 & 0.8083 & 3.9376 \\
2.8125 & -1.8131 & 0.0006 \\
\cdots & \cdots & \cdots & \cdots
\end{bmatrix} \]

\[\Rightarrow C_{4312} \text{ and } C_{1432} \text{ (!) are not ICI.} \]

Configurations \(C_{1234} \) and \(C_{3412} \) pass all PRG tests for ICI.

Closing loops \{1–1, 3–3\} in \(C_{1234} \) and \{1–3, 3–1\} in \(C_{3412} \) gives:

\[\Lambda(\bar{G}_{0204}) = \Lambda(\bar{G}_{0402}) = \begin{bmatrix}
0.1020 & 0.8980 \\
0.8980 & 0.1020
\end{bmatrix} \]

Partial relative gains: 0.8980 for \(C_{3412} \), 0.1020 for \(C_{1234} \).

\[\Rightarrow C_{3412} \text{ should be preferred over } C_{1234}. \]
Control of Petlyuk column, configuration C_{3412}. (Decentralized PI control designed for $T_r = 5$ min; first order column dynamics, $T = 20$ min.)
Control of Petlyuk column, configuration C_{1234}. (Decentralized PI control designed for $T_r = 5$ min; first order column dynamics, $T = 20$ min.)
Control of Petlyuk column, configuration C_{1432}. (Decentralized PI control designed for $T_r = 5$ min; first order column dynamics, $T = 20$ min.)
Block decentralized control

Diagonal BRG elements for 2×2 subsystems: $\text{RGA}(:, [1 1 1 2 2 3]) + \text{RGA}(:, [2 3 4 3 4 4]) \Rightarrow$

<table>
<thead>
<tr>
<th></th>
<th>$u_1 + u_2$</th>
<th>$u_1 + u_3$</th>
<th>$u_1 + u_4$</th>
<th>$u_2 + u_3$</th>
<th>$u_2 + u_4$</th>
<th>$u_3 + u_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>0.89</td>
<td>24.6</td>
<td>24.5</td>
<td>-23.5</td>
<td>-23.6</td>
<td>0.11</td>
</tr>
<tr>
<td>y_2</td>
<td>0.08</td>
<td>-49.0</td>
<td>-48.1</td>
<td>49.1</td>
<td>50.0</td>
<td>0.92</td>
</tr>
<tr>
<td>y_3</td>
<td>-0.07</td>
<td>39.6</td>
<td>38.6</td>
<td>-37.6</td>
<td>-38.6</td>
<td>1.07</td>
</tr>
<tr>
<td>y_4</td>
<td>1.11</td>
<td>-13.3</td>
<td>-13.0</td>
<td>14.0</td>
<td>14.3</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

Implies variable pairings $(y_1, y_4)-(u_1, u_2)$ and/or $(y_2, y_3)-(u_3, u_4)$. Which ones?

PRGs for the remaining system when $(y_1, y_4)-(u_1, u_2)$ and $(y_2, y_3)-(u_3, u_4)$ are closed (one at a time) \Rightarrow

$$\Lambda(\bar{G}_{0340}) = \begin{bmatrix} 0.00 & 1.00 \\ 1.00 & 0.00 \end{bmatrix}, \quad \Lambda(\bar{G}_{1002}) = \begin{bmatrix} 28 & -27 \\ -27 & 28 \end{bmatrix}$$

The PRGs imply that configuration

- C_{0430} (pairings $\{y_2-u_4, y_3-u_3, (y_1, y_4)-(u_1, u_2)\}$) is excellent

- C_{1002} (pairings $\{y_1-u_1, y_4-u_2, (y_2, y_3)-(u_3, u_4)\}$) is poor

NERPPI Course 1999: Control Structure Selection... 36
Control of Petlyuk column, configuration C_{0430}. (Block-decentralized PI control designed for $T_r = 5$ min; first order column dynamics, $T = 20$ min.)
Control of Petlyuk column, configuration C_{1002}. (Block-decentralized PI control designed for $T_r = 5$ min; first order column dynamics, $T = 20$ min.)
Integrated square errors

Integrated square errors of simulated control configurations \((t = 1000 \text{ min}) \):

<table>
<thead>
<tr>
<th>Config.</th>
<th>(e_y^2)</th>
<th>(e_u^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{3412})</td>
<td>360</td>
<td>17025</td>
</tr>
<tr>
<td>(C_{1234})</td>
<td>16409</td>
<td>4206</td>
</tr>
<tr>
<td>(C_{1432})</td>
<td>15592</td>
<td>7143</td>
</tr>
<tr>
<td>(C_{0430})</td>
<td>15</td>
<td>669</td>
</tr>
<tr>
<td>(C_{1002})</td>
<td>15483</td>
<td>6900</td>
</tr>
</tbody>
</table>

\(e_y^2 \) = sum of ISE of all outputs
\(e_u^2 \) = sum of ISE of all inputs
Conclusions

- Control structure selection with an emphasis on decentralized integral control and integrity was considered.
- Some fundamental shortcomings of the (open-loop) RGA – a popular tool for control structure selection – were mentioned.
- In particular, variable paring based on the RGA is unreliable for systems larger than 2×2.
- It was shown that many variable pairing problems could be solved by considering the RGA for a partially controlled system.
- The Partial Relative Gain (PRG) provides necessary conditions for integral controllability with integrity.
- The PRG can solve the variable pairing problem when conventional use of the RGA fails or is ambiguous.
- The PRG is also useful when considering block-decentralized control.
$F = F_1 + F_2$

$T = (T_1 F_1 + T_2 F_2)/F$

$G_{FF_1} = 1, \quad G_{FF_2} = 1$

$G_{TF_1} = (T_1 - T_2)/F, \quad G_{TF_2} = (T_2 - T_1)/F$

$\lambda_{FF_1} = (T - T_2)/(T_1 - T_2) = F_1/F$
RGA for 2×2 System

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} G_{11}(s) & G_{12}(s) \\ G_{21}(s) & G_{22}(s) \end{bmatrix} \begin{bmatrix} u_1(s) \\ u_2(s) \end{bmatrix}$$

$$\lambda_{11}(s) = \left(1 - \frac{G_{12}(s)G_{21}(s)}{G_{11}(s)G_{22}(s)} \right)^{-1}$$

$$\Lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} \lambda_{11} & 1 - \lambda_{11} \\ 1 - \lambda_{11} & \lambda_{11} \end{bmatrix}$$
Applications of the PRG

Example 3: Elimination of infeasible configurations

Example by Campo and Morari (1994):

\[
G = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 0.5 & 2 \\
0.25 & 0.5 & 0.25 & 4 \\
4 & 2 & 0.25 & 4 \\
\end{bmatrix}
\]

\[
\Lambda(G) = \begin{bmatrix}
0.8000 & -2.0000 & 2.1333 & 0.0667 \\
-2.0000 & 5.0000 & -1.3333 & -0.6667 \\
0.0667 & -0.6667 & 0.1778 & 1.4222 \\
2.1333 & -1.3333 & 0.0222 & 0.1778 \\
\end{bmatrix}
\]

Configurations that may be ICI according to the RGA: \(C_{1234}, C_{1243}, C_{3214}, C_{3241}, C_{4213}\) and \(C_{4231}\).

Configurations \(C_{1243}, C_{3214}\) and \(C_{4231}\) can be eliminated because they have negative Niederlinski indices.
Example 3 (cont’d)

Closing control loop y_2-u_2:

$$
\bar{G}_{1034} = \begin{bmatrix}
0 & : & 0.5 & -1 \\
\vdots & & \square & \cdots & \cdots \\
-0.25 & : & 0 & 3 \\
2 & : & -0.75 & 0
\end{bmatrix}
$$

$$
\Lambda(\bar{G}_{1034}) = \begin{bmatrix}
0 & : & 1.0667 & -0.0667 \\
\cdots & & \square & \cdots & \cdots & \cdots \\
-0.0667 & : & 0 & 1.0667 \\
1.0667 & : & -0.0667 & 0
\end{bmatrix}
$$

Only configuration C_{3241} may be ICI.

Configuration C_{3241} passes all tests for ICI based on Theorem PRG.
Applications of the PRG

Example 4: Ranking of feasible configurations

Example by Niederlinski (1971), Mijares et al. (1986):

$$G = \begin{bmatrix}
1.0 & -0.1 & 1.0 \\
-0.5 & 0.6 & 0.1 \\
-0.2 & -0.8 & 0.3
\end{bmatrix}$$

$$\Lambda(G) = \begin{bmatrix}
0.3390 & -0.0169 & 0.6780 \\
0.5020 & 0.3911 & 0.1069 \\
0.1591 & 0.6258 & 0.2151
\end{bmatrix}$$

Configurations with variable pairings on positive relative gain values: $C_{123}, C_{132}, C_{312}, C_{321}$.

All configurations satisfy the ICI requirements of Theorem PRG.
Example 4 (cont’d)

Comparison of C_{123} and C_{132} by closing loop y_1-u_1:

$$
\bar{G}_{023} = \begin{bmatrix} 0.55 & 0.60 \\ -0.82 & 0.50 \end{bmatrix},
$$

$$
\Lambda(\bar{G}_{023}) = \begin{bmatrix} 0.3585 & 0.6415 \\ 0.6415 & 0.3585 \end{bmatrix}
$$

The PRG implies $C_{132} > C_{123}$.

By closing other loops it can be shown that

$$
C_{312} > \{C_{132}, C_{321}\} > C_{123}
$$
Applications of the PRG

Example 5: Block-decentralized control

Example studied by Alatiqi and Luyben (1986), Grosdidier and Morari (1987):

\[
G = \begin{bmatrix}
4.09 & -6.36 & -0.25 & -0.49 \\
-4.17 & 6.93 & -0.05 & 1.53 \\
-1.73 & 5.11 & 4.61 & -5.48 \\
-11.28 & 14.04 & -0.10 & 4.49 \\
\end{bmatrix}
\]

\[
\Lambda(G) = \begin{bmatrix}
3.1058 & -0.9007 & -0.4749 & -0.7302 \\
-5.0308 & 4.6742 & -0.0395 & 1.3961 \\
-0.0838 & 0.0543 & 1.5492 & -0.5197 \\
3.0088 & -2.8278 & -0.0348 & 0.8538 \\
\end{bmatrix}
\]

Only configuration with all variable pairings on positive relative gain values is \(C_{1234}\).

\(C_{1234}\) satisfies all necessary ICI conditions of Theorem PRG.
Example 5 (cont’d)

Closing loop y_2-u_2:

\[
\Lambda(G_{1034}) = \begin{bmatrix}
0.1997 & -0.5620 & 1.3623 \\
\cdots & \cdot & \cdots \\
0.0651 & 1.5616 & -0.6267 \\
0.7352 & 0.0005 & 0.2644
\end{bmatrix}
\]

The PRG suggests that the variable pairings \(\{y_1-u_1, y_4-u_4\} \) are inferior to \(\{y_1-u_4, y_4-u_1\} \).

Closing loop y_3-u_3 in addition to y_2-u_2:

\[
\Lambda(G_{1004}) = \begin{bmatrix}
0.2647 & \cdot & \cdot & 0.7353 \\
\cdots & \cdot & \cdots \\
\cdots & \cdot & \cdot & \cdots \\
0.7353 & \cdot & \cdot & 0.2647
\end{bmatrix}
\]

This PRG implies that configuration C_{4231} would be better than C_{1234}.

However, C_{4231} is not ICI (NI < 0).

The contradiction suggests a block-decentralized control structure with variable pairings \(\{y_2-u_2, y_3-u_3, (y_1, y_4)-(u_1, u_4)\} \).