5. Dynamics of Simple Systems

5.3 Second-order systems

5.3.2 Identification of overdamped system

An overdamped second-order system without zeros, but possibly including a time-delay, can be identified from its step response by a simple “graphical” technique. Such a system has the transfer function

\[G(s) = \frac{Ke^{-Ls}}{(T_1s+1)(T_2s+1)} , \quad T_1 \geq T_2 \geq 0 \]

(5.3.1)

where

- \(K \) is the static gain
- \(T_1 \) and \(T_2 \) are time constants
- \(L \) is a time delay

The assumption \(T_1 \geq T_2 \geq 0 \) is only for convenience. As special cases it includes

- \(T_1 = T_2 > 0 \), i.e. a critically damped system
- \(T_1 > 0, T_2 = 0 \), i.e. a first-order system
Harriott’s method (slightly modified)

Plot the step response

- the size of the input step is u_{step}
- the final change of the output is y_∞
- calculate $K = y_\infty / u_{\text{step}}$
- the time it takes to reach $0.72y_\infty$ is t_{72}
- estimate the time delay L “visually” (do not use tangent method)
- calculate $t_z = 0.4t_{72} + 0.6L$
- the value of the output at time t_z is y_z; find it from the step response
- calculate y_z / y_∞ and read z from this diagram
 - if $y_z / y_\infty < 0.27$, the time delay L has to be increased
 - if $y_z / y_\infty > 0.4$, L has to be decreased
 - if a new value for L was selected, calculate a new t_z etc.
5.3 Second-order systems

- read τ_{72} corresponding to z from this diagram
- calculate $T_{\Sigma} = (t_{72} - L)/\tau_{72}$
- calculate
 - $T_1 = zT_{\Sigma}$
 - $T_2 = T_{\Sigma} - T_1$
- now all parameters of the transfer function are known!