New Perspectives on Lipid and Surfactant based DDS for Oral Delivery of Poorly Soluble Drugs

Anette Müllertz, PhD
Professor, Head of Center
Bioneer:FARMA - Danish Drug Development Center
Department of Pharmacy
amu@farma.ku.dk
Distribution of Marketed Drugs

High Solubility

Class 1
~35%
High solubility
Rapid dissolution
High permeability
Ext. Metabolism
Minimal transporter

Class 3
~25%
High solubility
Low permeability
Poor metabolism
Transporters & efflux

Low Solubility

Class 2
~30%
Low solubility
High permeability
Ext. Metabolism
Efflux in gut

Class 4
~10%
Low solubility
Low permeability
Poor metabolism
+ Transporters & efflux

Adapted from Les Benet
Distribution of New Molecular Entities

High Solubility Low Solubility

High Permeability

Class 1
5%

Class 2
70%

Low Permeability

Class 3
5%

Class 4
20%

Adapted from Les Benet, EDAN 2007
Four Scenarios:
Four Different Patient Needs, Four Target Profiles

1. **Scenario 1**: I need it now!
 - Graph showing concentration over time with a peak at 0 hours.

2. **Scenario 2**: Now AND later
 - Graph showing concentration over time with a peak at 0 hours and another peak later on.

3. **Scenario 3**: Just in time delivery
 - Graph showing concentration over time with a peak just after the delivery time.

4. **Scenario 4**: Keeping your head above water.
 - Graph showing concentration over time with a flat line above the water level.
Strategies to improve solubility

Molecular level
- Salt formation
- Co-solvents
- Prodrugs
- Cyclodextrins

Colloidal level
- SEDDS
- SMEDDS
- SEDDS
- Micro-emulsions
- Lipid solutions
- Emulsions
- Metastable polymorphs
- Particle size reduction
- Amorphous systems

Particulate level
Poorly water-soluble drugs

HYDROPHOBIC

"brickdust"

LiPOPHILIC

"greaseballs"

Physico-chemical properties determine formulation approach
Poorly water-soluble drugs

HYDROPHOBIC

"brickdust"

\[\equiv \]

LIPOPHILIC

"greaseballs"

Lipid-based drug delivery

Drug already in solution! no dissolution step
Lipid-based drug delivery systems

What are lipids?

- Chemically diverse structures
- Limited affinity to water

Retinol (Vitamin A)

Phospholipid structure

Cholesterol
Lipid-based Drug Delivery Systems

Why lipids?

- Essential part of our diet
- Body well equipped for lipid uptake & processing...

![Evolution of Lipid Consumption]

Positive Food Effect on many poorly soluble drugs

Bioavailability increased

- Propranolol
- Metoprolol
- Labetalol
- Propafenone
- Hydralazine
- Griseofulvin
- Nitrofurantoin
- Mebendazole
- Flubendazole
- Halofantrine
- Phenytoin
- Dicoumarol

- Melander et al. (1977a)
- Melander et al. (1977a)
- Daneshmend & Roberts (1982)
- Axelsson et al. (1987)
- Melander et al. (1977b)
- Palma et al. (1986)
- Rosenberg & Bates (1976)
- Munst et al. (1980)
- Michiels et al. (1982)
- Milton et al. (1989)
- Melander et al. (1979b)
- Melander & Wahlin (1978)
FIGURE 1

Approved Drugs: Use of Solubilization Technologies Since the 1980s

- Lipids
- Solid dispersions
- Nanocrystals
- Amorphous APIs

Number of Approved Products

Year

0 5 10 15 20 25 30 35
Lipid-based Drug Delivery Systems

Lipid based formulations deliver the drug in solution to the GI tract - thereby overcoming the solubility / solubilization problem – and increasing bioavailability.

Transfer between colloid phases
Critical; avoidance of precipitation

Examples:
- Oil solution
- Emulsions
- Microemulsions
- Liposomes
- Dry emulsions
- Solid lipid nanospheres (SLN)
- Self-emulsifying Drug Delivery Systems
- Self-(Nano) Emulsifying Drug Delivery Systems
Lipid-based Drug Delivery Systems

Lipid based formulations deliver the drug in solution to the GI tract - thereby overcoming the solubility / solubilization problem – and increasing bioavailability.

Transfer between colloid phases
Critical; avoidance of precipitation

Examples:
- Oil solution
- Emulsions
- Microemulsions
- Liposomes
- Dry emulsions
- Solid lipid nanospheres (SLN)
- Self-emulsifying Drug Delivery Systems
- **Self-(Nano) Emulsifying Drug Delivery Systems**
 - Administration in capsules – as preconcentrate
 - Fast gastro-intestinal dispersion of drug in a nano-emulsion
 - Enhance bioavailability of poorly soluble drugs
SNEDDS - Homogenous Preconcentrate in Capsule
• Oil
• Surfactants
• Co-solvent

“SNEDDS are isotropic mixtures of oil and surfactants forming fine oil-in-water emulsions when introduced into water under gentle agitation”

Lipid phase
triacylglycerides, diacylglycerides

Hydrophobic surfactants (HLB <12)
Span, Maisine, Labrafil®

Hydrophilic surfactants (HLB >12)
Gelucire®, Cremophor®, Tween, Labrasol®

Drug compound

Hydrophilic co-solvents
ethanol, PEG, propylene glycol, transcutol®

Dispersion (not to scale!)
Cryo-TEM of SNEDDS (1:100)

DLS: 30 nm

Buffer, pH 6.5

5 mM BS / 1.25 mM PL, pH 6.5

SNEDDS A29E:
18% Sesame oil
10% Oleic acid
45% Cremophor RH40
10% Ethanol
Lipid-based Formulation Classification System (LFCS)

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
<th>Type IIIA</th>
<th>Type IIIB</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical composition</td>
<td>Oil solution</td>
<td>SEDDS</td>
<td>SEDDS, SNEDDS</td>
<td>SNEDDS</td>
<td>Micelles</td>
</tr>
<tr>
<td>TG, DG, MG</td>
<td>100</td>
<td>40-80</td>
<td>40-60</td>
<td><20</td>
<td>-</td>
</tr>
<tr>
<td>Surfactants (HLB<12)</td>
<td>-</td>
<td>20-60</td>
<td>-</td>
<td>-</td>
<td>0-20</td>
</tr>
<tr>
<td>Surfactants (HLB>12)</td>
<td>-</td>
<td>-</td>
<td>20-40</td>
<td>20-50</td>
<td>30-80</td>
</tr>
<tr>
<td>Hydrophilic cosolvents</td>
<td>-</td>
<td>-</td>
<td>0-40</td>
<td>50-100</td>
<td>0-50</td>
</tr>
<tr>
<td>Particle size (nm)</td>
<td>coarse</td>
<td>250-2000</td>
<td>100-250</td>
<td>50-100</td>
<td>30-80</td>
</tr>
</tbody>
</table>

Pouton 2006, EJPS
Lipid-based Drug Delivery Systems: Examples on the market

Oil solutions

\[
\text{Marinol}^\text{®} \quad \text{(dronabinol)}
\]

\[
\text{Rocaltrol}^\text{®} \quad \text{brand of calcitriol}
\]

\[
\text{Rocaltrol}^\text{®} \quad \text{brand of calcitriol}
\]
Cyclosporin A

Figure 2.1. Structure of cyclosporin A (1). Abu, l-2-amino-3-methylbutyric acid; Bmt, (4R)-4-{{E}-2-butenyl}-4-methyl-l-threonine (= (+S)-3R, 4R, 6[T]-2-amino-3-hydroxy-4-methylfoc-6-enoic acid); Sar, sarcosine.
Neoral - Cyclosporin A

Cyclic peptide
11 amino acids
Molecular weight: 1202
Lipophilic drug, very low water solubility
Fair oil solubility (4% in olive oil)

Old formulation (Sandimmune): emulsion concentrate
Bioavailability: 30%, variable (10 - 60 %)

Neural – reduced Food Effect!
Inactive Ingredients:
Corn oil
Labrafil M 2125 CS
(polyoxyethylated glycolysed glycerides)

Crude O/W emulsion
Food effect (37%)

SNEDDS, 30 nm
Absorption of cyclosporin from Sandimmune and Sandimmune Neural in healthy Mexican volunteers

Figure 1. Whole blood cyclosporine concentrations against time curve after administration of two oral formulations to 23 Mexican healthy volunteers. (○) corresponds to Sandimmune® and (●) corresponds to Neoral®. Data are expressed as mean ± SEM.
Saquinavir

Invirase

Fortovase
Development of SNEDDS

Composition:
Lipids (liquid)
Surfactant (hydrophilic)
Co-surfactant (hydrophobic)
Co-solvent

API in solution ($< s_{eq}$)

Development parameters:
- API solubility....
- Homogenous preconcentrate...
- Dispersion rate...
- Droplet size..
- Precipitation of drug upon dispersion..
- Digestion of SNEDDS...
- Precipitation of drug upon dispersion..
- Absorbability of drug from SNEDDS...

Critical Quality Attributes (CQA)
Development of SNEDDS

System A

Cremophor RH40

Sesame oil

Oleic acid

System A with 10% ethanol

Cremophor RH40

Sesame oil

Oleic acid

- Inhomogeneous mixture
- Homogeneous mixture
- Homogeneous mixture that forms a nano-emulsion in water (1+100)

A. Larsen et al, in prep.
Effect of fenofibrate on micro-emulsification space

Response surface methodology (MODDE):
4 formulation variables:
• Oil (rapeseed oil, 10-35%)
• Surfactant (Cremophor RH 40, 20-35%)
• Co-surfactant (Maisine 35-1, 30-60%)
• Co-solvent (ethanol, 0-15%)

No fenofibrate

With fenofibrate
Lipolysis of surfactants

Impact on digestion of drug delivery systems

5 mM BS : 1.25 mM PL, 1 g surfactant / 100 ml medium

(Larsen et al, 2005)
Simulating the Gastro-Intestinal Tract

- Mouth
- Saliva
- Amylase
- Stomach
- HCl
- Pepsin
- Gastric lipase
- Duodenum
- Pancreas
- Enzymes
- Jejunum
- Bile
- Ileum
- Colon
- Microbiota

Hydrodynamics
- Liquid volumes
- Transit times
Drug fate during *in vitro* lipolysis of SNEDDS

SNEDDS
- Vehicle phase
- Dissolved drug

Biorelevant medium (Fasted state)

Emulsification Lipolysis

Pancreatic extract

Continued Lipolysis
- Solubilized drug
- Micelle
- Vesicles (uni-/multilamellar)
- Microemulsion droplet
- Pancreatic lipase
- Pancreatic co-lipase
- Precipitated free drug
- Co-Precipitates of free drug and lipids
Dynamic *in vitro* lipolysis

Controlling the rate of lipolysis

Enzyme inhibition

(Ultra)centrifugation

HPLC

HPLC XRPD

Dissolution
Lipid DDS – going solid…..

Solid Lipid Nanoparticles
Solid Lipid Extrusion
Nanostructured lipid particles

Dry emulsions

Microporous adsorbents
Microporous silica
Mesoporous silicon dioxide
Magnesium aluminometasilicate (Neusilin)
Aerosil
silica-lipid hybrid microparticles

Lipid-based drug delivery systems

| Protection | • By dosing in lipids
| | • By encapsulation in nano-emulsions |
| Solubilization | • Drug dosed in solution
| | • Digestion of excipients
	• Solubilization in mixed micelles
Permeability	• Medium chain fatty acids – can open tight junctions
Efflux transporters	• Some surfactants are inhibitors of efflux pumps
Cyp enzymes	• Some surfactants inhibit Cyp3A4
Lymphatic transport	• Long chain fatty acids can induce lymphatic transport
	• \(\log P > 5; S_{TG} > 50 \text{ mg/g} \)
Lipid-based drug delivery systems

Uptake of Drug from Lipid Based Formulations

From Porter, Trevaskis and Charman, 2007, Nature Reviews vol. 6, 231-248
Absorption to the systemic circulation

- Major pathway
 - GI-tract
 - Portal blood
 - Lymph
- Minor pathway
 - Hepatic metabolism
 - Systemic circulation
The lymphatic system

Anatomy:
- Lymph vessels are distributed along the blood vessels. Not circulating.

Function:
- Maintain the body’s water balance.
 - Drain extracellular fluid from tissue to the blood
- Important role in the immune system (lymphocytes).
- Transport of absorbed lipids from the intestine to the blood.

Closely related to lipid digestion and absorption
Lacteals in villi drain the endothelial cells

Pore radius 100-150 Å
Lipid Absorption and Transport

(Porter et al., 2007)
The Intestinal Lymphatics:

Chylomicrons

- Lipoprotein particle
- Formed in the endothelial cells from absorbed and endogenous lipids
- TG core coated with cholesterol, phospholipids and apolipoproteins
- 75-1200 nm
- 1-2% of mesenteric lymph
- Degraded by lipoprotein lipase to chylomicron remnants that are cleared in the liver.
Lymphatic Transport of halofantrine
Canine model

Lymphatic transport

Only relevant for lipophilic compounds:

LogP > 5
Solubility in TG > 50 mg/g

That are dosed with LIPIDS

Development of Lipid-Based DDS
Dynamic Lipolysis Model

Principle: pH-stat, pH 6.5, 37°C
Titration of generated fatty acids

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile salts</td>
<td>5 mM</td>
</tr>
<tr>
<td>Lecithin</td>
<td>1.25 mM</td>
</tr>
<tr>
<td>Trizma maleate</td>
<td>2 mM</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>150 mM</td>
</tr>
<tr>
<td>SNEDDS</td>
<td>1.5 g</td>
</tr>
<tr>
<td>Drug</td>
<td>X mg</td>
</tr>
<tr>
<td>Pancreatic lipase</td>
<td>800 UPS /ml</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>0.045 mmol/min</td>
</tr>
</tbody>
</table>
in vitro lipolysis

Titration of generated fatty acids with NaOH
Drug fate during \textit{in vitro} lipolysis of SNEDDS

- **SMEDDS**
 - Vehicle phase
 - Dissolved drug

- **Lipolysis medium** (Fasted state)
 - Micelle

- **Pancreatic extract**

- **Emulsification Lipolysis**

- **Continued Lipolysis**

- **Solubilized drug**
- **Micelle**
- **Vesicles (uni-/multilamellar)**
- **Microemulsion droplet**
- **Pancreatic lipase**
- **Pancreatic co-lipase**
- **Precipitated free drug**
- **Co-Precipitates of free drug and lipids**
Cryo-TEM of Lipolysis media

$t = 5$ min

Fasted state
5 mM BS / 1.25 mM PL

Fed state
20 mM BS / 5 mM PL
Human intestinal fluids

Fed state: 60 min after intake of an emulsion
Dynamic *in vitro* lipolysis

Controlling the rate of lipolysis

Enzyme inhibition

(Ultra)centrifugation

HPLC

Controlling the rate of lipolysis
Example:
Bioavailability study in mini-pigs

Purpose:

- Influence of emulsion particle size of SEDDS (nm $\geq \mu$m)
- Compare SEDDS with simple oil solution and powder
- Impact of concurrent food administration

Nielsen et al EJBP, 2008
Mini-pig study

Sixway cross over – Latin square design
Fasted vs Fed state (high-fat meal)

Model drug: **Probucol**
\[\text{logP} > 10 \]
MW = 516
\[S_w : 2-5 \text{ ng/ml} \]

Control:
Powder (18.3±0.6µm)
1:1 w/w dispersion with lactose

Lipid based formulations:
- Oil solution
- SNEDDS
- SMEDDS
- Cremophor RH40 micellar system

I.V.:
o/w emulsion for infusion

Nielsen et al EJBP, 2008
Case study: Does size matter? Mini-pig study – Probucol (LogP = 10)

Composition and particle size

<table>
<thead>
<tr>
<th></th>
<th>Cremophor solution</th>
<th>SMEDDS</th>
<th>SEDDS</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Micelles</td>
<td>30:60:10</td>
<td>26.67:53.33:20</td>
<td>00:90:10</td>
</tr>
<tr>
<td>Cr RH40</td>
<td>109.3</td>
<td>36.4</td>
<td>36.4</td>
<td>0</td>
</tr>
<tr>
<td>M:O</td>
<td>0</td>
<td>72.8</td>
<td>72.8</td>
<td>109.3</td>
</tr>
<tr>
<td>EtOH</td>
<td>12.1</td>
<td>12.1</td>
<td>27.3</td>
<td>12.1</td>
</tr>
<tr>
<td>Probufol</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Admin per kg	Saline	14.5 ±0.3 nm	45.0 ±3.4 nm	4.58 ±0.84 µm	NA
	FaSSIF	12.5 ±0.9 nm	42.6 ±1.5 nm	2.56 ±1.49 µm	-
	FeSSIF	13.5 ±0.5 nm	44.1 ±1.0 nm	3.06 ±0.58 µm	-

Droplet size					
	Saline	14.5 ±0.3 nm	45.0 ±3.4 nm	4.58 ±0.84 µm	NA
	FaSSIF	12.5 ±0.9 nm	42.6 ±1.5 nm	2.56 ±1.49 µm	-
	FeSSIF	13.5 ±0.5 nm	44.1 ±1.0 nm	3.06 ±0.58 µm	-
	Dispersion time	<10 min	<3.5 min	<1.5 min	NA

Nielsen et al EJPS 2008
Plasma profiles

Fasted state

-fed state
Development of SNEDDS

Traditionally:
- API in solution at 70-80% of SNEDDS solubility
- NO precipitation during in vitro lipolysis

BUT:
- Solubility of API in SNEDDS is often LOW!
- API precipitation common during in vitro lipolysis

SO:
- What about supersaturation... suspensions etc...?

And – does precipitation during in vitro lipolysis matter
SNEDDS Loading Schemes

- Super-SNEDDS solution (200%) 0.2 g lipid
- Super-SNEDDS suspension (200%) 0.2 g lipid
- Chasing principle 0.4 g lipid
- SNEDDS 80% 0.4 g lipid
- Stability
 - In vitro lipolysis
 - In vivo
 - PK studies
- Aqueous suspension

In vivo performance

SNEDDS 80%

0.4 g lipid

Super-SNEDDS solution (200%)

0.2 g lipid

Chasing principle

0.4 g lipid

SNEDDS 80%

0.4 g lipid
super-SNEDDS preparation

prepare SNEDDS by mixing lipid, surfactant, cosolvent

add drug above $s_{eq}(150\%)$

suspension

heating cycle 3 h at 60°C

cooling cycle overnight at 37°C

supersaturated solution

super-SNEDDS

in vitro characterisation physical stability
Halofantrine Super-SNEDDS

Antimalarial drug: $pK_a \approx 9$, $\log P \approx 8.5$, BCS II
- MC-SNEDDS: 28.2 mg HAL (75%); 1x, 2x
- MC-super-SNEDDS: 56.4 mg HAL (150%); 1x

Polarised light microscopy:
- no drug crystals in (MC) S-SNEDDS detected

Stability > 8 months ($25^\circ C$) in glass vials

Chemical stability:
97% of declared HAL content found after 5 months storage at $25^\circ C$ of MC-super-SNEDDS
Solubilization during *in vitro* Lipolysis: halofantrine

Thomas et al. JCR 2012
Precipitation during *in vitro* Lipolysis: halofantrine

Halofantrine precipitate amorphous during *in vitro* lipolysis
In vivo performance – SNEDDS with halofantrine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MC-SNEDDS 1 Caps (28.2 mg HAL)</th>
<th>MC-SNEDDS 2 Caps (56.4 mg HAL)</th>
<th>MC-super-SNEDDS 1 Caps (56.4 mg HAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (ng/ml)</td>
<td>388 ± 64.5^a</td>
<td>621 ± 256^{ab}</td>
<td>1167 ± 245^b</td>
</tr>
<tr>
<td>t_{max} (h)</td>
<td>2.7 ± 0.3</td>
<td>3.0 ± 0.4</td>
<td>2.5 ± 0.2</td>
</tr>
<tr>
<td>$\text{AUC}_{(0-28)}$ (ng·h/ml)</td>
<td>4458 ± 639^a</td>
<td>6826 ± 2234^{ab}</td>
<td>11263 ± 1719^b</td>
</tr>
<tr>
<td>Absolute bioavailability (%)</td>
<td>41.0 ± 5.0</td>
<td>31.5 ± 10.4</td>
<td>53.2 ± 8.6</td>
</tr>
</tbody>
</table>

Thomas et al. JCR 2012
What about rats?

Smaller dose – smaller gastro-intestinal volumes
Higher gastric pH
Continuous bile secretion

But – preferred preclinical species

Will super-SNEDDS work?

Excipient	 %
Soybean oil	 27.5
Maisine 35-1	 27.5
Kolliphor RH40	 35
Ethanol	 10

Michaelsen MH et al, AAPS J, 2015
Formulations approaches

- **Super-SNEDDS solution (200%)**
 - 0.2 g lipid
- **Super-SNEDDS suspension (200%)**
 - 0.2 g lipid
- **Chasing principle**
 - 0.4 g lipid
- **SNEDDS 80%**
 - 0.4 g lipid
- **Aqueous suspension**
- **Stability**
 - *In vitro* lipolysis
 - *In vivo* PK studies

University of Copenhagen
Department of Pharmacy
Additional Question:

Can SNEDDS be transferred into a Controlled release drug Delivery system?

Tool: Orlistat (tetrahydrolipstatin)
Lipase inhibitor – lipid soluble

Michaelsen MH et al, AAPS J, 2015
Rat study – conclusions

• SuperSNEDDS work in rats
• Orlistat control release of Hf

Lipolysis needed for drug absorption?

Michaelsen MH et al, AAPS J, 2015
SNEDDS Loading Schemes

- **Super-SNEDDS solution (200%)**
 - 0.2 g lipid

- **Super-SNEDDS suspension (200%)**
 - 0.2 g lipid

- **Chasing principle**
 - 0.4 g lipid

- **SNEDDS 80%**
 - 0.4 g lipid

Stability
- *In vitro* lipolysis
- *In vivo* PK studies

- **Aqueous suspension**
Case study:
Can co-admin of SNEDDS and an aqueous suspension increase exposure in rats?

5 Treatments:
- SNEDDS 80%
- Super-SNEDDS solution 200%
- Super-SNEDDS suspension 100% + 100%
- Aqueous suspension
- Chasing principle: Aq suspension + placebo SNEDDS

In vivo study: Fasted rats
Oral Gavage of dispersions

Model drugs:
R3040 (Neutral, Log P: 10.4, S_{SNEDDS}: 205 mg/kg)
Cinnarizine (weak base, Log P: 5.8, S_{SNEDDS}: 25 mg/kg)

<table>
<thead>
<tr>
<th>Excipient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean oil</td>
<td>27.5</td>
</tr>
<tr>
<td>Maisine 35-1</td>
<td>27.5</td>
</tr>
<tr>
<td>Kolliphor RH40</td>
<td>35</td>
</tr>
<tr>
<td>Ethanol</td>
<td>10</td>
</tr>
</tbody>
</table>

Siqueira et al (in prep)
Case study:
Can co-admin of SNEDDS and an aqueous suspension increase exposure in rats?

R3040 (LogP: 10.4, S_{SNEDDS}: 205 mg/g)
Dose: 20 mg/kg

Cinnarizine (LogP: 5.8, S_{SNEDDS}: 25 mg/g)
Dose: 25 mg/kg

- R3040: SNEDDS 80% = super-SNEDDS solution > The other formulations
- Cinnarizine: SNEDDS 80% = Chasing Principle > The other formulations
Case study:
Can co-admin of SNEDDS and an aqueous suspension increase exposure in rats?

R3040 (LogP: 10.4, S_{SNEDDS}: 205 mg/g)
Dose: 20 mg/kg

Cinnarizine (LogP: 5.8, S_{SNEDDS}: 25 mg/g)
Dose: 25 mg/kg

SNEDDS 80% = super-SNEDDS solution > The other formulations

SNEDDS 80% = Chasing Principle > The other formulations

More lipid (SNEDDS) dosed for the SNEDDS 80% and the Chasing Principle

THUS:

R3040 need to be dosed in solution for optimal absorption

Cinnarizine can dissolve in vivo – therefore co-dosing of SNEDDS (Chasing Principle) provide optimal absorption

BUT – what about IVIVC...?

Siqueira et al (in prep)
One-step intestinal *in vitro* lipolysis model (R3040)

Composition of lipolysis media

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial composition (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile salts</td>
<td>2.95</td>
</tr>
<tr>
<td>NaCl</td>
<td>50</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>0.26</td>
</tr>
<tr>
<td>Maleic acid</td>
<td>2</td>
</tr>
<tr>
<td>Tris</td>
<td>2</td>
</tr>
<tr>
<td>Pancreatin</td>
<td>600 USP units/mL</td>
</tr>
</tbody>
</table>

Dias 70
IVIVR...

R3040 (Log P: 10.4, S_{SNEDDS}: 205 mg/g)
Dose: 20 mg/kg

In vitro – intestinal lipolysis:
R3040 in aqueous phase

No rank order correlation with solubilization
How to improve the *in vitro* lipolysis model?

Consider the physiology of the rat
- Volume to dose ratio
- Stomach:
 - Residence time
 - Gastric lipolysis (lingual)
 - Gastric pH 4 in rats
- Gastric emptying rate
- Intestine:
 - bile salt & phospholipid levels

Composition of NEW media

<table>
<thead>
<tr>
<th>Compound</th>
<th>FaSSGF</th>
<th>FaSSIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile salts</td>
<td>0.08</td>
<td>50</td>
</tr>
<tr>
<td>NaCl</td>
<td>34.2</td>
<td>70</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>0.02</td>
<td>3.7</td>
</tr>
<tr>
<td>Maleic acid</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tris</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pancreatin</td>
<td>600 USPunits/mL</td>
<td></td>
</tr>
</tbody>
</table>

pH
- 4
- 6.5

Concentrations before addition of gastric content
Two-step “rat” in vitro lipolysis model

Added volumes of dispersed formulations

<table>
<thead>
<tr>
<th></th>
<th>R3040 (mL)</th>
<th>Cinnarizine (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNEDDS 80%</td>
<td>6.25</td>
<td>10.63</td>
</tr>
<tr>
<td>Chasing placebo SNEDDS</td>
<td>6.25</td>
<td>10.63</td>
</tr>
<tr>
<td>Chasing aq suspension</td>
<td>6.50</td>
<td>8.60</td>
</tr>
<tr>
<td>Super-SNEDDS</td>
<td>2.5</td>
<td>4.34</td>
</tr>
<tr>
<td>Aq suspension</td>
<td>6.50</td>
<td>8.60</td>
</tr>
</tbody>
</table>

Initial volume of gastric media: 10 mL

Initial volume of intestinal media: 32 mL

Volume of pancreatin (179 USP/mL): 3 mL

Replacement of the collected volume with intestinal media

Siqueira et al (in prep)
Two-step “rat” in vitro lipolysis model

R3040 (Log P: 10.4, S_{SNEDDS}: 205 mg/g)
Dose: 20 mg/kg

In vitro – intestinal step:
R3040 in aqueous phase

The new model result in **Rank order correlation** with solubilization

Siqueira et al (in prep)
Supersaturation and lipid drug delivery

<table>
<thead>
<tr>
<th></th>
<th>Halofantrin</th>
<th>Simvastatin</th>
<th>Cinnarizine</th>
<th>Danazol</th>
<th>Fenofibrate</th>
<th>R3040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersaturation in oil (preconcentrate)</td>
<td>Yes (10 month)</td>
<td>Yes (10 month)</td>
<td>Short-term</td>
<td>Yes (days)</td>
<td>Short-term</td>
<td>Yes</td>
</tr>
<tr>
<td>Supersaturation during lipolysis</td>
<td>No</td>
<td>Yes (possibly)</td>
<td>No</td>
<td>Yes</td>
<td>?</td>
<td>No</td>
</tr>
<tr>
<td>Precipitate during lipolysis</td>
<td>amorphous</td>
<td>amorphous</td>
<td>amorphous</td>
<td>crystalline</td>
<td>crystalline</td>
<td>amorphous</td>
</tr>
<tr>
<td>Super-SNEDDS Increase BA compared to SNEDDS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>?</td>
<td>Yes</td>
<td>=</td>
</tr>
</tbody>
</table>

Considerations:
- Propensity to supersaturate in lipids
- Propensity to supersaturate during in vitro digestion
- Crystalline / amorphous precipitation during lipolysis
- API physchem properties
- etc
SUPERSATURATION
Drug absorption from SNEDDS

- Solubilized drug
- Amorphous drug
- Supersaturated drug
- Crystalline drug

- Dispersion and digestion
- Precipitation

- Mucus layer
- Intestinal epithelium

- Absorption of dissolved drug
- FAST dissolution and absorption
- Absorption of dissolved drug
- SLOW dissolution and absorption
Conclusion

Often drug are dosed in solution in lipid-based Drug Delivery Systems (LbDDS)

Supersaturated LbDDS – and suspensions - actually often also work!
This simplifies the use of lipids

Physiologically relevant models – e.g. including digestion – is often needed when developing LbDDS

Drug precipitation during “traditional” digestion is not necessarily a problem – also consider the solid state from of the precipitate!
Predictive *in vitro* models for enabling DDS

We have gone part of the way – still a long way to go – until we can Predict Bioavailability
The Rational Oral Drug Delivery Research Group

Special thanks to:
Thomas Rades
Korbi Loebman
Philip Sassene
Nicky Thomas
Maria Michaelsen

Food Science, UCPH
Flemming H Larsen

UBC
Kishor Wasan
Thank you for your attention

Questions?

anette.mullertz@sund.ku.dk