Active Damping of Torsional Vibrations of Internal Combustion Engines

Department of Information Technologies
Faculty of Technology
Åbo Akademi University
Fredrik Ostman and Hannu Toivonen
fredrik.ostman@wartsila.com | hannu.toivonen@abo.fi

Introduction
For large medium-speed engines – used in power plants and marine propulsion applications – stricter demands on emission control and performance are addressed by new computer-controlled techniques, such as common-rail fuel injection, dual fuel techniques, etc.

Electronically controlled fuel-injection techniques provide today essential means for optimizing the performance and emissions of fuel-combustion process of internal combustion engines. Due to varying dynamics and ageing of components of the fuel-injection systems, there may be a significant dispersion of the injected cylinder-wise fuel amounts. As the resulting discrepancy between the cylinder-wise torque contributions increases torsional vibrations of the crankshaft, it is important to continuously monitor and calibrate the fuel injections.

Problem Formulation
The objectives of the project are to:
- Reconstruct the superposed oscillating gas torque applied on the flywheel from measurements of angular speed of the crankshaft
- Retrieve information of the relative cylinder-wise torque profile from the reconstructed gas torque
- Adjust the cylinder-wise fuel injections in such a way that the torsional vibrations of the crankshaft are minimized.

Reconstruction of superposed torque
The behavior of the flywheel is mainly dependent on the cylinder-wise torque excitations, how the crankshaft dynamics filters these excitations and the dynamics of the flexible coupling, cf. Fig. 3.

Fig. 1. Common-rail fuel injection system.

Fig. 2. Cylinder balancing device.

Fig. 3. Fuel combustion excitations of a six cylinder engine

By assuming that the crankshaft is rigid, the engine-generator set can be represented by a two-mass lumped model, cf. Fig. 4.

Fig. 4. Engine-generator model.

The oscillating gas torque \(M \) can be calculated from measurements of the angular speeds from both sides of the flexible coupling as:

\[
\begin{align*}
J_1 \ddot{\phi}_1 &= \frac{1}{2} \frac{dA}{dt} \omega_1 + D_1 \dot{\phi}_1 + C_1 (\phi_2 - \phi_1) + K_1 (\theta_2 - \theta_1) - M \\
J_2 \ddot{\phi}_2 &= D_2 \dot{\phi}_2 + C_2 \phi_2 + K_2 (\phi_2 - \phi_1) + K_I (\theta_2 - \theta_1) + M
\end{align*}
\]

By using the engine-specific phase-angle diagrams which relate each excited order to the consecutive cylinder fringes, the lowest torque frequencies can be analyzed in order to retrieve the cylinder-wise torque contributions of the engine.

Conclusions
In comparison with automotive engines, cylinder balancing of large medium-speed engines requires different approaches in order to successfully minimize torsional vibrations. By, moreover, using adaptive approaches the convergence rate improves significantly.

Acknowledgements
This project was done in cooperation with and financed by Wärtsilä Finland Oy – R&D through two TEKES projects and one EU framework 6 project.

Publications

Fig. 5. Phase-angle diagram for frequency order 1/2 of a six cylinder engine.

Fig. 6. Block diagram of the cylinder balancing method.

Fig. 8. Tests on 20% engine load