Fourier series

Consider a discrete-time signal

\[\{ x(n) \} = \{ x(0), x(1), \ldots, x(N - 1) \} \]

We can expand it in terms of sinusoidals as

\[x(n) = \sum_{k=1}^{N/2} A_k \cos(2\pi f_k n + \phi_k), \quad n = 0, 1, \ldots, N - 1 \]

For given frequencies \(f_k \), the \(N \) parameters \(A_k, \phi_k, k = 1, \ldots, N \) can be found by solving the equation system composed of the above equations.

This equation system is, however, nonlinear in \(A_k \) and \(\phi_k \)!
A linear system of equations is obtained by observing that

\[A \cos(2\pi fn + \phi) = a \cos(2\pi fn) + b \sin(2\pi fn) \]

where \(a = A \cos(\phi) \), \(b = -A \sin(\phi) \)

[Follows from trigonometric identity:

\[\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \]

\[\Rightarrow \]

\[\cos(2\pi fn + \phi) = \cos(\phi) \cos(2\pi fn) - \sin(\phi) \sin(2\pi fn) \]
Selection of frequencies f_k:

Observe that

$$\cos(2\pi fn + \phi) = \cos(-2\pi fn - \phi)$$

$$= \cos(-2\pi fn - \phi + 2\pi n)$$

$$= \cos(2\pi (1 - f)n - \phi)$$

⇒ the frequencies f and $1 - f$ result in the same signal, if the sign of the phase is inverted.

⇒ It is sufficient to consider frequencies $0 \leq f \leq 1/2$.

Taking equidistant frequencies gives

$$f_k = 0, \frac{1}{N}, \frac{2}{N}, \ldots, \frac{1}{2} (= \frac{N/2}{N}) \quad (N \text{ even})$$

$$f_k = 0, \frac{1}{N}, \frac{2}{N}, \ldots, \frac{1 - 1/N}{2} \quad (= \frac{(N - 1)/2}{N}) \quad (N \text{ odd})$$
Hence we have the Fourier series:

\[x(n) = \sum_{k=0}^{M} a_k \cos\left(2\pi \frac{k}{N} n\right) + b_k \sin\left(2\pi \frac{k}{N} n\right), \quad n = 0, 1, \ldots, N - 1 \]

where \(M = N/2 \), for even \(N \), and \(M = (N - 1)/2 \), for odd \(N \).

Notice, that for

- \(k = 0 \): \(\cos(0 \cdot n) = 1 \) and \(\sin(0 \cdot n) = 0 \), and for

- \(k = N/2 \): \(\cos(2\pi \frac{1}{2} n) = (-1)^n \) and \(\sin(2\pi \frac{1}{2} n) = 0 \).

\[\Rightarrow b_0 = 0 \text{ and } b_{N/2} = 0 \]
It follows that the Fourier series is determined by the N coefficients

$$a_0, a_1, \ldots, a_{N/2}, b_1, \ldots, b_{(N-1)/2} \quad \text{(even } N\text{)}$$

$$a_0, a_1, \ldots, a_{(N-1)/2}, b_1, \ldots, b_{(N-1)/2} \quad \text{(odd } N\text{)}$$

The N coefficients can be determined from the N relations for $x(0), x(1), \ldots, x(N-1)$.

This an N-dimensional linear equation system.

The solution can be found efficiently by exploiting properties of the trigonometric functions.
SOLUTION: Multiply $x(n)$ with $\cos(2\pi \frac{l}{N} n)$ and sum over n:

$$\sum_{n=0}^{N-1} x(n) \cos(2\pi \frac{l}{N} n) = \sum_{k=0}^{M} \sum_{n=0}^{N-1} a_k \cos(2\pi \frac{l}{N} n) \cos(2\pi \frac{k}{N} n) + \sum_{k=0}^{M} \sum_{n=0}^{N-1} b_k \cos(2\pi \frac{l}{N} n) \sin(2\pi \frac{k}{N} n)$$

Use the fact that

$$\sum_{n=0}^{N-1} \cos(2\pi \frac{l}{N} n) \cos(2\pi \frac{k}{N} n) = \begin{cases} N/2 & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases}$$

$$\sum_{n=0}^{N-1} \cos(2\pi \frac{l}{N} n) \sin(2\pi \frac{k}{N} n) = 0, \text{ all } l, k$$
\[\Rightarrow \quad \sum_{n=0}^{N-1} x(n) \cos(2\pi \frac{l}{N} n) = \frac{1}{2} Na_l \]

which gives \(a_l \).

Multiplying \(x(n) \) with \(\sin(2\pi \frac{l}{N} n) \) and summing over \(n \) gives analogously:

\[\sum_{n=0}^{N-1} x(n) \sin(2\pi \frac{l}{N} n) = \frac{1}{2} Nb_l \]

Hence we have:

\[a_l = \frac{2}{N} \sum_{n=0}^{N-1} x(n) \cos(2\pi \frac{l}{N} n) \]

\[b_l = \frac{2}{N} \sum_{n=0}^{N-1} x(n) \sin(2\pi \frac{l}{N} n) \]
Proof of

\[\sum_{n=0}^{N-1} \cos(2\pi \frac{l}{N}n) \cos(2\pi \frac{k}{N}n) = \begin{cases} N/2 & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases} \]

Use the formula \(\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha - \beta) + \frac{1}{2} \cos(\alpha + \beta) \):

\[\cos(2\pi \frac{l}{N}n) \cos(2\pi \frac{k}{N}n) = \frac{1}{2} \cos(2\pi \frac{l-k}{N}n) + \frac{1}{2} \cos(2\pi \frac{l+k}{N}n) \]

and

\[\sum_{n=0}^{N-1} \cos(2\pi \frac{m}{N}n) = \begin{cases} 0 & \text{if } m \neq 0 \\ N & \text{if } m = 0 \end{cases} \]

\[\sum_{n=0}^{N-1} \cos(2\pi \frac{l}{N}n) \sin(2\pi \frac{k}{N}n) = 0 \] can be shown similarly
FOURIER SERIES OF SAMPLED SIGNAL

Consider a continuous-time signal $x(t)$ which is sampled with sampling interval T_s to give sampled signal

$$\{x(nT_s)\} = \{x(0), x(T_s), \ldots, x((N - 1)T_s)\}$$

Now the time instants are nT_s, and the sampling frequency is $f_s = 1/T_s$

\Rightarrow Fourier series takes the form

$$x(nT_s) = \sum_{k=0}^{M} a_k \cos(2\pi \frac{k f_s}{N} nT_s) + b_k \sin(2\pi \frac{k f_s}{N} nT_s)$$

$$= \sum_{k=0}^{M} a_k \cos(2\pi \frac{k}{N} n) + b_k \sin(2\pi \frac{k}{N} n), \quad n = 0, 1, \ldots, N - 1$$

i.e., it has the same form as before.